Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change.

نویسندگان

  • Theresa Casey
  • Osman V Patel
  • Karen Plaut
چکیده

Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanotransduction as an Adaptation to Gravity

Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as ot...

متن کامل

Hypergravity disruption of homeorhetic adaptations to lactation in rat dams include changes in circadian clocks

Altered gravity load induced by spaceflight (microgravity) and centrifugation (hypergravity) is associated with changes in circadian, metabolic, and reproductive systems. Exposure to 2-g hypergravity (HG) during pregnancy and lactation decreased rate of mammary metabolic activity and increased pup mortality. We hypothesize HG disrupted maternal homeorhetic responses to pregnancy and lactation a...

متن کامل

Perinatal Programming of Circadian Clock-Stress Crosstalk

An intact communication between circadian clocks and the stress system is important for maintaining physiological homeostasis under resting conditions and in response to external stimuli. There is accumulating evidence for a reciprocal interaction between both-from the systemic to the molecular level. Disruption of this interaction by external factors such as shiftwork, jetlag, or chronic stres...

متن کامل

A Review of Driver Genetic Alterations in Thyroid Cancers

Thyroid cancer is a frequent endocrine related malignancy with continuous increasing incidence. There has been moving development in understanding its molecular pathogenesis recently mainly through the explanation of the original role of several key signaling pathways and related molecular distributors. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, su...

متن کامل

Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription.

Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional-translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2015